ABUJA CONTAINER ENERGY STORAGE PROJECT
Standardized plug-and-play designs have reduced installation costs from $85/kWh to $40/kWh since 2023. Smart integration features now allow multiple industrial systems to operate as
Conclusion The present study investigates the feasibility of solar hybrid system to generate steam in the oil refinery to maintain the temperature of heavy crude oil products before despatching from storage tanks. Due to the intermittent behaviour of solar energy, the solar hybrid system is integrated with a sensible heat storage tank.
Other studies in the literature considered coupling solar energy systems to oil refineries to decarbonize their operation. The applicability and feasibility of introducing a concentrated solar power (CSP) system to reduce partial reliance on process heaters of a crude oil refinery was studied by Danish et al. .
Employing solar energy to drive crude oil refineries is one of the investigated pathways for using renewable energy sources to support lowering the carbon emissions and environmental impact of operating the processing of fossil-based fuels.
Using TRNSYS software, the proposed Parabolic Trough Collector (PTC)-based solar heating system paired with the boiler is modelled. Sensible thermal energy storage (TES) system is integrated into the refinery's process heating to handle the intermittent nature of solar energy.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Get detailed specifications, case studies, and technical data for our PV container and energy storage solutions.
123 Renewable Energy Street
London EC1A 1BB, United Kingdom
+44 20 7127 4182
Monday - Friday: 8:00 AM - 6:00 PM GMT