Communication Base Station Cost Optimization: Navigating the 5G
With operators spending $180 billion annually on network infrastructure, how can we reconcile the 63% surge in energy consumption per 5G site with shrinking profit margins?
The limited penetration capability of millimeter waves necessitates the deployment of significantly more 5G base stations (the next generation Node B, gNB) than their 4G counterparts to ensure network coverage . Notably, the power consumption of a gNB is very high, up to 3–4 times of the power consumption of a 4G base stations (BSs).
On the one hand, 5G network operators are highly motivated to cooperate with the power system in energy matters, given that the numerous gNBs with their high energy consumption result in significant electricity bills that can be troublesome for the operators, .
Collaborating with the power system can provide energy incentives for 5G networks. On the other hand, the existing communication infrastructure in 5G networks allows network operators to participate in demand response without the need for additional investments in flexibility modifications. 1.2. Literature review
The 5G network and power system are coupled energetically by power feeders. Based on gNB-sleep actions and mode switching of their BESSs, 5G network can provide power support to the power system when the grid frequency deviation reaches the threshold.
PDF version includes complete article with source references. Suitable for printing and offline reading.
Get detailed specifications, case studies, and technical data for our PV container and energy storage solutions.
123 Renewable Energy Street
London EC1A 1BB, United Kingdom
+44 20 7127 4182
Monday - Friday: 8:00 AM - 6:00 PM GMT